Lecture 14: Options

ECON435: Financial Markets and the Macroeconomy

Anton Korinek

Spring 2013

Derivative Securities

Derivative Securities (or "derivatives"):

- price depends on (derives from) another security, e.g. stocks
 - \rightarrow "contingent" securities
- useful for both hedging and speculation

Main Categories:

- Options
- Futures
- Swaps

Definition of Options

Call Option = right to **buy** an *underlying security*

- □ at a specified price: *exercise* or *strike* price
- on or before the maturity date or expiration date

Premium or purchase price = compensation to the seller for "writing" (= selling) the option

Definition of Options

Put Option = right to **sell** an *underlying security*

- □ at a specified price: *exercise* (or *strike price*)
- on or before the maturity date (or expiration date)

Note:

- □ holder will exercise the option to buy the security only if market price > strike price → make profit
- no obligation for holder to exercise
 - \rightarrow can let the option expire: value is zero

Option Terminology

- □ "In the money"
 - option can be exercised profitably
- □ "At the money"
 - market price = exercise price
 - \rightarrow investor indifferent
- Out of the money
 - exercising the option would not be profitable

Options Trading

- \Box OTC \rightarrow offers more flexibility
- On exchanges, e.g.
 - Chicago Board Options Exchange (CBOE)
 - International Securities Exchange (ISE)
 - \rightarrow more liquid, cheaper

Clearinghouse: Options Clearing Corporation

- becomes counterparty to each buyer/writer
- guarantees contract performance
- imposes margin requirement on writer

American vs. European Options

European option: can only be exercised at the maturity date

American option: can be exercised at any time before maturity

BUT: typically this is not done → the holder would lose the *time value* of the option (i.e. the chance to profit from future price increases)

Examples of Option Contracts

- Stock options
- Index options

- Futures options
- Foreign currency options
- Interest rate options
- Commodity price options

Notation of Option Contract

9

- $S_T = Stock Price$
- X = Exercise Price

Payoff to holder of call option: $S_T - X$ if $S_T > X$ 0 if $S_T \le X$

Cost to writer of call option: $-(S_T - X)$ if $S_T > X$ 0 if $S_T \le X$

Option Premium

Buyer needs to compensate writer of option by paying a premium (purchase price)

Total profit for holder: payoff – premium
Total profit for writer: premium – payoff

Example: Call option on Apple shares

- □ Strike price: \$100
- Premium: \$14

Payoff to the Option Holder

Payoff to the Option Writer

Payoff of a Put Option

Risks of Option Investing

Buying an option leads to:

- □ large gains if shares move in the right direction
- a total loss if shares move in the wrong direction

Writing an option leads to:

- immediate income from the premium received
- no losses if shares move in the right direction
- unlimited losses if shares move in the wrong direction

Protective Put Strategy:

- owning a stock
- buying a put to hedge against price declines
- potential losses are limited
- gains are reduced by premium
- → "portfolio insurance"

Covered Call

Covered Call Strategy:

- owning a stock
- writing a call option
- obtain premium income
- potential gains are limited by call option

Note: the call option is "covered" by the shares owned, as opposed to "naked" option writing

Straddle

Straddle = buying
a call option and
a put option
on the same stock with
 identical strike price

- → gain if stock moves sharply up or down
 → loss of premium if
 - stock doesn't move much

Put-Call Parity

Two strategies with identical payoffs:

- holding a call option with strike price X and T-bills that pay out X
- a stock and a put option on it with strike price X (protective put portfolio)
- \rightarrow need to trade at identical price

$$C + \frac{X}{(1+r_f)^T} = S_0 + P$$

Put-Call Parity: Example

Stock Price = 110Call Price = 17Put Price = 5Risk Free = 5%Maturity = 1 yrStrike = 105

117 > 115

→ sell call and buy put to make a riskless arbitrage profit of \$2

Payoffs of Arbitrage Strategy

	Immediate Cash Flow		w in 1 year	
Position	Cash Flow	$\pmb{S}_{ au} < \pmb{105}$	$\textit{\textbf{S}}_{ au} \geq$ 105	
Buy stock	-110	$S_{ au}$	$S_{ au}$	
Borrow \$105/1.05 = \$100	+100	-105	-105	
Sell call	+17	0	$-(S_T - 105)$	
Buy put		$105 - S_{T}$	0	
TOTAL	2	0	0	